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Abstract. As an object of the research, a square fragment of the wall of the spar of the low- or medium-capacity 

airplane wing caisson structure is considered. When designing thin spar walls, it is advisable to use anisotropic 

panels with different values of critical shear stresses depending on the direction of the action of the shear forces in 

different design cases of loading. The paper assumes that the shape of the panel is close to square, the deflection 

function is described by trigonometric functions, includes two terms and satisfies the boundary conditions for 

hinged support. The Bubnov-Galerkin method is used to solve a geometrically nonlinear problem for a square 

anisotropic panel under shear loading. The presented solution of the geometrically nonlinear problem is reduced 

to a nonlinear system of two equations with respect to two deflection amplitudes. From the definition of the Erie 

stress function, analytical expressions for the membrane stresses arising from the loss of panel stability are written 

down in the paper. When considering a linear problem, an analytical expression for determining the critical flows 

at the loss of stability of square anisotropic panels is obtained. The above expression for a given tangential flux 

and stacking allows us to carry out the design calculation and determine the minimum thickness of an anisotropic 

panel. On the basis of the presented analytical expression, examples of calculations of shear stability of smooth 

square anisotropic panels are given and the possible effectiveness of anisotropic structures as compared to 

orthotropic panels is shown when considering two design cases under the action of shear forces that differ in 

direction and absolute values. 
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Introduction 

Let us consider a fragment of the wall structure of the wing caisson spar of a low- or medium-

capacity aircraft between the ribs in the root part of the wing, where there are large construction heights, 

and the wall is designed under the conditions of stability and load-bearing capacity limitations. Let the 

specified fragment of the wall has a shape close to a square. Note that practically all wing structures of 

modern passenger airplanes are designed for loads in “straight” cases (for example, case A [1]) with 

operational overloading nyoper = 2.5, and in the “reverse” cases (e.g., the case of D [1]) for overloaded 

loads nyoper = -1.0. That is, the shear force in the “straight” (wing bend up) cases is greater than in the 

“reverse” (wing bend downwards) cases and it is advisable to use walls of anisotropic structure when 

designing thin walls of spars. The specified design problem for rectangular long wall fragments from 

the position of stability is considered in [2]. The monograph [3] notes the practical significance of the 

analytical solution obtained in [2]. 

Let us further consider the problems of stability and post-buckling behaviour of an anisotropic 

square panel under shear in order to further develop techniques for optimal design. In this case, we could 

assume that the square anisotropic panel should take two design cases under the action of tangential 

flows of different signs and differing in magnitude, for example, by more than 2 times.  

Note that the design problems of rectangular anisotropic walls were considered in [4] under stability 

and post-buckling state constraints. The methodology for the design of composite panels considering 

the above constraints is outlined in [5].  

The works [6-7] are devoted to the design of load-bearing panels considering the solution of optimal 

reinforcement problems. The solutions of problems of composite panels stability under shear are given 

in works [8-9]. Note that analytical solutions of stability and geometrically nonlinear problems can be 

used when considering the behaviour of defects of the splitting type. The publications [10-11] present 

the results of computational and experimental works in this direction. 

Problem statement and initial relations  

Let us represent the deflection of a square anisotropic panel (with comparable geometric parameters 

a ≈ b) under the action of tangential flows and the boundary conditions corresponding to the hinged 

support in the following form  
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Let us use the initial relations of composite structures presented in [12]. Let us write down the 

equation of joint deformation of an anisotropic panel with consideration of geometric nonlinearity  

 L1(F) – L2(W) = 0,    (2) 

where F – function of Erie stresses. 

 ( )
4

4

3

4

1322

4

223

4

314

4

1

11

y

F

Exy

F
g

yx

F
g

yx

F
g

x

F

E
FL

xy 


+




−




+




−




= , 

 ( )
2

2

2

2
2

2

2
y

W

x

W

yx

W
WL








−












= , 

 

xy

yxyxyy

G
g

,,

31

 +
= , 

x

yx

y

xy

xy EEG
g


−−=

1
22

,

xy

xxyxyx

G
g

,,

13

 +
= , 

where Ex, Ey, Gxy, xy – averaged characteristics of the multilayer package 

 y,xy, xy,y – influence coefficients of the anisotropic structure [12]. 

When solving the geometrically nonlinear problem by the Bubnov-Galerkin method, we use the 

equations 
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Here and hereafter, Dmn are the bending stiffnesses of the anisotropic panel [12]. 

Applied calculation and design methodology  

Then we substitute the deflection (1) into the joint deformation equation (2). As a result, we obtain 

the equation 
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the solution of which will be a function of the stresses Eri  
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where  px, py, pz – normal and tangential stresses applied to the panel. 

After considering partial solutions of the homogeneous equation, we can determine the following 

coefficients, considering the anisotropic structure 
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From the definition of the stress function Eri, the stresses in the median surface of the anisotropic 

plate can be determined  
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Then, in accordance with the procedure of the Bubnov-Galerkin method, we substitute the 

deflection (1) and the stress function (5) into equations (3)-(4). After some cumbersome transformations 

one can obtain a nonlinear system of equations regarding deflection amplitudes under the influence of 

tangential stresses 
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Note that the solution of this system in the general case is only possible numerically. 

Now let us consider the problem of shear stability and rewrite the system of equations (8) 

considering rejection of nonlinear terms with high degrees of deflection amplitude (f3
i→0). A simplified 

system of equations for small deflections in this case is 
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Then we can write down the determinant of the system of equations (9) with respect to the deflection 

amplitudes. At 01 f  and 02 f  we have 
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from where we can write the quadratic equation with respect to the shear force and find its critical 

value as a solution of the equation 
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and Dαβ = D̄αβδ3,

 
let us rewrite the solution of equation 

(11) in the following form 
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Note that when designing load-bearing panels, as a rule, the initial ones are flows, but not stresses. 

The written equality for a given shear flux allows us to determine the minimum thickness of the panel 

from the conditions of stability. 

Next, we consider the post-buckling behaviour of a thin anisotropic panel under shear and assume 

that the most likely cause of failure may be the achievement of the limiting tangential stresses τ̄xy. The 

effective stresses in this case are found from the equation 
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Note that after the loss of stability, the anisotropic panel must accept the load, which is determined 

by the condition of reaching the tangential stresses of τ̄xy. To calculate the ultimate tangential force, let 

us rewrite equation (13) in the form of equality 
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expressing from which the flux qxy can be substituted into the system (8) and obtain two nonlinear 

equations with respect to the unknown deflection amplitudes f1 and f2.  

Next, to determine the maximum tangential stresses, it is necessary to find the potential-critical 

points. In this case, considering that the trigonometric function Δxy has a periodic character, it is 

reasonable to choose a potential-critical point with coordinates. 

Let us rewrite the system (8) in the form 
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where the designations Dmn = D̄mnδ3. 

Then, from expression (15), considering (14), we can express the effective shear flux qxy and 

substitute it in the system (16). As a result, we obtain a system of nonlinear equations with respect to 

the two unknown deflection amplitudes to determine the stress-strain state in the post-buckling state for 

an anisotropic panel at a given thickness δ. Note that such a system can be solved numerically using 

software packages such as Mathcad. 

Calculation of anisotropic square panels stability 

Let us consider, for example, the calculation of stability of a square panel with total thickness 

δ = 1 mm made of carbon fiber reinforced plastic type KMU-4 with geometric dimensions 

a*b = 100*100 mm. Table 1 shows the critical forces determined by formula (12). The presented values 

illustrate the possibility of using panels with anisotropic structure. The last column of the table shows 

the critical force ratios for square panels in anisotropic (given in lines 1-2 and 4-5) and orthotropic 

layups (given in lines 3 and 6). 

Table 1  

Critical shear forces of anisotropic square panels 

Laying qxy, kgf·mm2 
Comparative 

coefficients 

45º/45º/0º/0º 3.62 0.74 

-45º/-45º/0º/0º 6.33 1.29 

45º/0º/0º/-45º 4.91 1.0 

30º/30º/0º/0º 3.48 0.76 

-30º/-30º/0º/0º 5.83 1.27 

30º/0º/0º/-30º 4.6 1.0 

Let us return to the design problem mentioned at the beginning of this paper for the stability 

conditions of an anisotropic wall, which can be loaded with two design cases with different directions 

and values of the cutting forces. Considering the results given in Table 1, it is possible to use similar 

layouts to select rational wall thicknesses from the stability conditions for different cases. Note that an 

orthotropic structure may not be optimal compared to an anisotropic wall for the maximum load case. 

In the practical implementation of an anisotropic structure from the structural and technological 

constraints will also require the addition of layers to the wall laying, for example, with an angle of 

reinforcement φ = 90º. In the example considered (Table.1) for a wall made of carbon fiber, the values 

of critical shear flows, depending on the direction of the reinforcement angles, differ by 

1.67....1.74 times.  

Conclusions 

This paper presents an analytical solution of the geometrically nonlinear problem for a square 

anisotropic panel under the action of shear forces, which is reduced to the solution of a nonlinear system 

of two equations. An analytical expression for determining critical flows at loss of stability is obtained 

in explicit form. The presented solutions can be used to calculate square structurally anisotropic panels 

under shear. Based on the obtained solution, a method for determining the optimal thicknesses of square 

anisotropic panels under shear under stability constraints is proposed. 
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